跳到主要內容

分散式的線上遊戲伺服器

smallworld是smallworld2網路架構的第三層(應用層)。

smallworld2網路架構分成四個階層,最底層是串流層(Stream),負責提供最基本的TCP/IP串流封裝及連線管理。第二層為封包層(Network),負責提供格式化的封包支援以及完整的斷線處理機制。第三層為應用層(Smallworld),提供動態可擴展的分散式網路架構。第四層為遊戲應用層,提供和線上遊戲一般應用邏輯相關支援。

設計smallworld應用層最大的困難在於,必須讓使用者也就是應用程式的開發者,能夠以開發單一伺服器應用的單純方式,來開發一個分散式架構的多人連線應用程式,所有複雜的細節都需由底層處理掉。smallworld建立了二個概念來達成這個目標,分別是Scope及VirtualConnection。

對於伺服器S而言,所有訊息都是透過一條Connection傳送出去的。Connection的另一個端點可能是一個Client,也可能是另一個Server。而這個端點可能是與伺服器S有實際建立連線,也可能是間接和伺服器S建立連線。假如這個Connection與伺服器S間有實體連線,則伺服器S就能直接把訊息傳送給對方,否則就以間接的方式轉送過去。無論這個Connection是直接或間接的連線,對於伺服器S來說,是不必關心的事情,底層自動會想辨法把訊息傳送給這條Connection的對應的端點上去。所以對伺服器S而言,Connection是虛擬的。

Connection的取得一律透過定義Scope作為Filter來獲得。以線上遊戲為例。當一個玩家登入遊戲後,就會有許多個Scope和他建立關係,例如這個玩家的可見視野、玩家加入的組隊、公會、聊天室、P2P交易、商店等等。這些全都是Scope,概念一樣,只是定義不同。透過定義好的Scope,再拿這個定義作為Filter由可以到達的在線上的伺服器收集符合的Connection,之後就可以對這些Connection作操作。

以上是構成smallworld的二個重要Concept。

------------------

套用smalllworld的框架就可以很容易建立可以動態擴展的線上遊戲架構,不過在實際應用上還是會有其它問題。舉個例子說明:假如我以單一伺服器的方式實作了一支Server程式,這支程式可以處理完整的虛擬世界。伺服器執行起來後如果發現登入玩家太多,伺服器負載太大時,我可以不必關機,只需要動態的再啟動新的伺服器加入服務就行了。

但如果我想改變配置,不要讓每一個Server程式都載入並處理完整的世界,我要把整個世界切分為幾塊,讓不同伺服器各別負責其中一塊,這些區塊可以完全獨立,或者也可以有重疊的區域。要如何作到?

為了實現這個功能,需要再引入一個新的概念,這個概念由smallworld2的網路第四層所提供...

留言

  1. ...
    維尼嗎?我是電話…
    我以為我已經夠閒了,你比我病的還重Orz
    你想搞出什麼東西啊

    回覆刪除
  2. 請問您有 FB 帳號嗎 ? :D

    回覆刪除

張貼留言

這個網誌中的熱門文章

以lex/yacc實作算式計算機

前面我們透過 手工的方式 實作了一個簡易的算式計算機,現在我們要開始使用工具來作同樣的事,比較看看手工和使用工具有什麼不同的差別。首先要介紹的就是lex&yacc。 lex & yacc lex(Lexical Analyzar)及yacc(Yet Another Compiler Compiler)是用來輔助程式設計師製作語法剖析器的程式工具。lex的工作就是幫助我們將輸入的資料文字串流分解成一個個有意義的token,而yacc的工作就是幫我們分析這些token和我們定義的規則作匹配。下圖中所表示的是使用lex及yacc的一般工作流程。 首先看到yacc會讀入一個.y檔案,這裡.y檔案的內容就是我們使用類似(E)BNF語法定義的語法規則,yacc會分析這些語法規則後,幫我們產生可以用來解析這些規則的程式碼,而這個檔案一般名稱預設為y.tab.c,產生的程式碼裡面最重要的一個的函式叫作yyparse。 同yacc類似,lex也會讀入一個.l的檔案,這個檔案裡面定義的是如何從文字流裡解出token的規則,使用的方法是常規表示式(regular expression)。在圖的左側中間我們還可以看到有一個叫作y.tab.h的檔案從yacc產生出來並餵給lex作輸入,這個檔案是yacc根據在讀入的.y檔裡面所定義的token代號所產生出來的一個header,這樣yacc及lex產生出來的程式碼裡面就可以使用共通定義的代碼而不必各寫個的。lex分析過.l檔案後也會產生一個一般預設叫作lex.yy.c的原始碼檔案,裡頭最重要的一個函式叫作yylex。 最後,我們把yacc產生出來的y.tab.c還有lex產生出來的lex.yy.c,以及其它我們自己撰寫的原始碼檔案一起拿來編譯再作連結,最後產生出來的就是一個可以用來解析我們定義的語法的解析器工具。以上是整個lex及yacc的使用流程概觀。 常規表示式 在正式使用lex之前,我們首先來對常規表示法作一個基本的認識。常規表示法是一種用來表示字串樣式(pattern)的中繼語言,就好比前文所介紹的(E)BNF表示式一樣,都是用來描述其它語言的語言,只不過用途不太一樣罷了。 常規表示式使用一些中繼符號(meta-symbol)以及ASCII字元定義字串樣式,以下列出一些常規表示式所使用的符號。 . 表示除了換行字元...

單人撲克牌遊戲 - 蒙地卡羅

更多可在網頁玩的 單人撲克牌遊戲 ; 新增一個簡單的單人撲克牌遊戲: 蒙地卡羅 ,簡單介紹一下玩法。 下載 事先排列好5x5張牌。 每次移動一張可以配對的牌,並消除這對牌。在上下、左右及斜向相隣的二張牌,只要擁有同樣數字(不計花色),即可配對。 消除二張配對的牌後,剩餘的牌以往左往上的方式補滿空隙,接著在發新牌補滿後面的空格。 重覆步驟2~3,直到沒有牌可以配對及發完所有牌為止。 結果有二種。一個是勝利,成功的消除掉所有牌。另一個是Gameover沒有牌可以再作配對。

關於C/C++的指標

我想應該還有不少人在使用指標上有些地方觀念不大清楚,比如說下面二個函式,那個是正確的?為什麼?像這樣的問題如果弄不清楚,寫出來的程式一定非常危險。 // 為簡化忽略檢查 void alloc_mem(char* p) // 版本1 {   p = new char[100]; } void alloc_mem(char** p) // 版本2 {   *p = new char[100]; } 如上,這個函式要配置大小是100個字元的記憶體並從傳入的參數p回傳,這二個版本除了輸入參數不一樣外大致上是一樣的;從第一個版本來看,參數是一個字元指標,記憶體配置出之後直接傳給p,如果觀念正確的人一定可以馬上指出這樣的寫法是錯誤的,第二個版本才是正確能work的。 現在就來說明為什麼,在這之前先要了解在C/C++中,函式的參數是如何傳遞的,在C/C++中函式的呼叫所傳入的參數是透過堆疊(Stack) 來傳入函式的,不懂什麼是堆疊也沒關係,就把它看成是另外一塊記憶體也行,當在程式中呼叫某個函式時,傳入的參數會先被複製到這塊記憶體中,當在函式中要使用這些參數時再從堆疊中去取出來。 以版本1的例子來說明,如下在程式中大概會這樣呼叫。 char* pp = NULL; alloc_mem(pp); pp一開始的初值是NULL,當呼叫alloc_mem時,pp的值會被複製到堆疊中(傳址),這種情況和以下的code事實上是對等的,只不過 p的值一開始被初始化成和pp的值一樣,p就好像一個區域變數一樣,一離開函式後這個變數就無效了,所以在外面的pp的值永遠都不會改變,同時在涵式中 new出來的記憶體也lost掉了。 void alloc_mem() {   char* p = new char[100]; } 再來看版本2,它的參數是一個指標的指標,這是什麼意思,我們先從實際使用上來看,如下。 char* pp = NULL; alloc_mem(&pp); 這次我們把pp這個變數的位址傳入涵式,所以在涵式中所得到的是pp這個變數的位址,在函式中p所含的內容是pp的位址,pp是一個char*形態的變數,p是一個指標它的內容是char*的形態,現在p已經指向pp了,所以對p的內容作改變,相對的pp的值也會跟著改變。 現在來看另...