跳到主要內容

不可思議: for (i = 0; i < 10; i++) 停不下來 !?

其實這是一個真實事件...

某一天上班時,我從一早就三不五時的聽到坐在我背後的同事低聲的哇哇叫。幾次下來,我也忍不住好奇的湊過去看看到底是怎麼一回事。結果他Demo了這麼一個不可思議的for迴圈給我看,難怪他一整個早上都在哇哇叫。這位同事因為整個陷入在這個不可思議的for迴圈裡而跳不出來,找不到問題的所在。但當局者迷,我當下眉頭一皺發覺事情並不單純,問題肯定不是出在這個for迴圈上面,再怎麼去看也是白癈力氣。這種奇奇怪怪的問題,很有可能是和記憶體的使用有關係,這個不可思議的for迴圈只不過是因為其它地方的Bug,所產生的現象。我把我的想法告訴了我這位同事後,過了不了多久,果然在其它地方找到了真正的問題所在,的確是因為記憶體的使用不當造成的現象。

;

底下在VC2003寫支小程式,立刻就能摸擬出這樣的現象。

int main()
{
int i, a[1];
for (i = 0; i < 10; i++) {
a[i] = 0;
}
}


如上所示,我宣告了一個只有一個元素的陣列a,然後用一個for迴圈去填a的內容。這裡所要示範的一個概念是:會產生這樣的問題,是因為i的值被其它人動到了。而在這個簡單的例子,就是利用這個概念,想辨法讓在填a的內容時,因為填寫錯誤(超出範圍),而去覆寫了i的值,而造成for迴圈停不下來的奇妙現象。



如圖在除錯模式中,在Watch裡加上檢視i和陣列a的位址和內容,然後一步步執行看看。可以發現i的位址和a[3]重疊了,但問題是a只宣告了一個元素,而這個迴圈卻打算存取10個元素。在這樣的情況下,i的值果然被覆寫了,所以這個for迴圈就這樣成為無窮迴圈而永遠跳不出來。

;

PS: 這個實驗是在VC2003和2005上作的,在其它Compiler也許會有不一樣的結果。

留言

  1. 我只想說寫出這種程式自己卻找不出問題的人該打屁股

    回覆刪除
  2. 以範例來說,看到a[1]就猜到了。
    不過真實的狀況,迴圈當中應該更複雜一點,不見得這麼好發現。
    ,但是只要Watch i這個變數。再step應該就知道是哪邊有問題才對。
    不過寫程式遇到鬼打牆的狀況,自已一直看容易掉入陷阱,找別人來看是很有效的方式,不然就是去休息一下再回來看。

    回覆刪除
  3. 差不多問題解決了,嘗試過後留下所有i 軌跡

    回覆刪除
  4. 編譯的時候最好把compiler warning全部都打開,如果運氣夠好compiler夠可憐你,例如GCC可能就會秀出warning: array subscript is above array bounds這種訊息.所以一般來說,寫程式的時候最好把warning設成error,強迫自己把warning全部清乾淨.真的清不掉但知道為什麼發生warning的case就強制disable該warning.這樣字少知道自己在幹嘛~台灣一堆公司的code都很髒,warning幾百年不清,真的很可怕.

    回覆刪除
  5. 這是很好的習慣, 也應該要這樣作, 這是控制程式碼品質最起碼的要求!

    回覆刪除

張貼留言

這個網誌中的熱門文章

以lex/yacc實作算式計算機

前面我們透過 手工的方式 實作了一個簡易的算式計算機,現在我們要開始使用工具來作同樣的事,比較看看手工和使用工具有什麼不同的差別。首先要介紹的就是lex&yacc。 lex & yacc lex(Lexical Analyzar)及yacc(Yet Another Compiler Compiler)是用來輔助程式設計師製作語法剖析器的程式工具。lex的工作就是幫助我們將輸入的資料文字串流分解成一個個有意義的token,而yacc的工作就是幫我們分析這些token和我們定義的規則作匹配。下圖中所表示的是使用lex及yacc的一般工作流程。 首先看到yacc會讀入一個.y檔案,這裡.y檔案的內容就是我們使用類似(E)BNF語法定義的語法規則,yacc會分析這些語法規則後,幫我們產生可以用來解析這些規則的程式碼,而這個檔案一般名稱預設為y.tab.c,產生的程式碼裡面最重要的一個的函式叫作yyparse。 同yacc類似,lex也會讀入一個.l的檔案,這個檔案裡面定義的是如何從文字流裡解出token的規則,使用的方法是常規表示式(regular expression)。在圖的左側中間我們還可以看到有一個叫作y.tab.h的檔案從yacc產生出來並餵給lex作輸入,這個檔案是yacc根據在讀入的.y檔裡面所定義的token代號所產生出來的一個header,這樣yacc及lex產生出來的程式碼裡面就可以使用共通定義的代碼而不必各寫個的。lex分析過.l檔案後也會產生一個一般預設叫作lex.yy.c的原始碼檔案,裡頭最重要的一個函式叫作yylex。 最後,我們把yacc產生出來的y.tab.c還有lex產生出來的lex.yy.c,以及其它我們自己撰寫的原始碼檔案一起拿來編譯再作連結,最後產生出來的就是一個可以用來解析我們定義的語法的解析器工具。以上是整個lex及yacc的使用流程概觀。 常規表示式 在正式使用lex之前,我們首先來對常規表示法作一個基本的認識。常規表示法是一種用來表示字串樣式(pattern)的中繼語言,就好比前文所介紹的(E)BNF表示式一樣,都是用來描述其它語言的語言,只不過用途不太一樣罷了。 常規表示式使用一些中繼符號(meta-symbol)以及ASCII字元定義字串樣式,以下列出一些常規表示式所使用的符號。 . 表示除了換行字元...

單人撲克牌遊戲 - 蒙地卡羅

更多可在網頁玩的 單人撲克牌遊戲 ; 新增一個簡單的單人撲克牌遊戲: 蒙地卡羅 ,簡單介紹一下玩法。 下載 事先排列好5x5張牌。 每次移動一張可以配對的牌,並消除這對牌。在上下、左右及斜向相隣的二張牌,只要擁有同樣數字(不計花色),即可配對。 消除二張配對的牌後,剩餘的牌以往左往上的方式補滿空隙,接著在發新牌補滿後面的空格。 重覆步驟2~3,直到沒有牌可以配對及發完所有牌為止。 結果有二種。一個是勝利,成功的消除掉所有牌。另一個是Gameover沒有牌可以再作配對。

關於C/C++的指標

我想應該還有不少人在使用指標上有些地方觀念不大清楚,比如說下面二個函式,那個是正確的?為什麼?像這樣的問題如果弄不清楚,寫出來的程式一定非常危險。 // 為簡化忽略檢查 void alloc_mem(char* p) // 版本1 {   p = new char[100]; } void alloc_mem(char** p) // 版本2 {   *p = new char[100]; } 如上,這個函式要配置大小是100個字元的記憶體並從傳入的參數p回傳,這二個版本除了輸入參數不一樣外大致上是一樣的;從第一個版本來看,參數是一個字元指標,記憶體配置出之後直接傳給p,如果觀念正確的人一定可以馬上指出這樣的寫法是錯誤的,第二個版本才是正確能work的。 現在就來說明為什麼,在這之前先要了解在C/C++中,函式的參數是如何傳遞的,在C/C++中函式的呼叫所傳入的參數是透過堆疊(Stack) 來傳入函式的,不懂什麼是堆疊也沒關係,就把它看成是另外一塊記憶體也行,當在程式中呼叫某個函式時,傳入的參數會先被複製到這塊記憶體中,當在函式中要使用這些參數時再從堆疊中去取出來。 以版本1的例子來說明,如下在程式中大概會這樣呼叫。 char* pp = NULL; alloc_mem(pp); pp一開始的初值是NULL,當呼叫alloc_mem時,pp的值會被複製到堆疊中(傳址),這種情況和以下的code事實上是對等的,只不過 p的值一開始被初始化成和pp的值一樣,p就好像一個區域變數一樣,一離開函式後這個變數就無效了,所以在外面的pp的值永遠都不會改變,同時在涵式中 new出來的記憶體也lost掉了。 void alloc_mem() {   char* p = new char[100]; } 再來看版本2,它的參數是一個指標的指標,這是什麼意思,我們先從實際使用上來看,如下。 char* pp = NULL; alloc_mem(&pp); 這次我們把pp這個變數的位址傳入涵式,所以在涵式中所得到的是pp這個變數的位址,在函式中p所含的內容是pp的位址,pp是一個char*形態的變數,p是一個指標它的內容是char*的形態,現在p已經指向pp了,所以對p的內容作改變,相對的pp的值也會跟著改變。 現在來看另...